

Limited Contingency Planning for Concurrent Activities

David E. Smith
Nicolas Meuleau, Sailesh Ramakrishnan, Betty Lu
Richard Dearden Rich Washington

Motivation

Reality

Better Science Return

[10,14:30]

Why Contingency Planning ??

Limited onboard processing

CPU, memory, time

Safety

sequence checking

Anticipation

setup steps

Technical Challenges

Planning under Uncertainty

Classical contingency planning
CNLP, Buridan, Cburidan, Cassandra, SGP, Cplan, ...

MDP planning

Just in Case (JIC) Scheduling

The Seed

Assume $\Delta t = \mu$

Failure Point

Failure Point

Where the Branch *Should* Go

Why?

Just in Case (JIC) Planning

Identifying Good Branches

Issues

Setup steps

Changing utilities

Sensor costs

Floating contingencies

Status

Limited Contingency Planning for Concurrent Activities

D. Smith, N. Meuleau, S. Ramakrishnan, B. Lu, R. Dearden, R. Washington

Goal

Develop contingency planning software for generating more robust mission operation plans

Technical Challenges

Continuous quantities (time, resources)
Concurrent overlapping activities
Goal oversubscription
Cognitive simplicity

Key Innovations

Incremental constructive approach Utility estimation Goal selection

NASA Relevance

Potential increases in science return for a variety of missions including:

Mars Smart Lander (2009) Comet nucleus sample return

Accomplishments

Prototype contingency planner using Europa
GUI for branching timelines
New approach to
branch utility estimation
branch condition selection
goal selection

Description

Plan based on expectations

Analyze
Add contingency branches

Low
Illumination

Nominal plan

Insufficient

Status

FY02

Prototype contingency planner using Europa Prototype GUI for contingent timelines

FY03

Integrated demo for MSL program
Implement intelligent branch selection
Setup steps

Setup Steps

Optimal Value Function

